步進電機是一種將電脈沖信號轉換為角位移的執(zhí)行機構。其主要優(yōu)點是有較高的定位精度,無位置累積誤差;特有的開環(huán)運行機制,與閉環(huán)控制系統(tǒng)相比降低了系統(tǒng)成本,提高了可靠性,在數(shù)控領域得到了廣泛的應用。但是,步進電機在低速運行時的振動、噪聲大,在步進電機的自然振蕩頻率附近運行時易產(chǎn)生共振,且輸出轉矩隨著步進電機的轉速升高而下降,這些缺點限制了步進電機的應用范圍。步進電機的性能在很大程度上取決于所用的驅動器,改善驅動器的性能,可以顯著地提高步進電機的性能,因此研制高性能的步進電機驅動器是一項普遍關注的課題。
1 步進電機驅動控制系統(tǒng)概述:步進電機驅動器、步進電機控制、步進電機控制
通常情況下,步進電機驅動系統(tǒng)由3部分構成:
①控制電路。用于產(chǎn)生脈沖,控制電機的速度和轉向。
②驅動電路。即本文的研究內容,由圖1所示的脈沖信號分配和功率驅動電路組成。根據(jù)控制器輸入的脈沖和方向信號,為步進電機各繞組提供正確的通電順序,以及電機需要的高電壓、大電流;同時提供各種保護措施,比如過流、過熱等。
③步進電機。控制信號經(jīng)驅動器放大后驅動步進電機,帶動負載。
2 步進電機驅動方法的比較:機械雕刻機步進電機驅動器、打標機步進電機驅動器
2.1 恒電壓驅動方式:步進馬達驅動器、步進馬達控制、步進馬達驅動
2.1.1 單電壓驅動:雕刻機步進電機驅動器、三相混合步進電機驅動器
單電壓驅動是指在電機繞組工作過程中,只用一個方向電壓對繞組供電。如圖2所示,L為電機繞組,VCC為電源。當輸入信號In為高電平時,提供足夠大的基極電流使三極管T處于飽和狀態(tài),若忽略其飽和壓降,則電源電壓全部作用在電機繞組上。當In為低電平時,三極管截止,繞組無電流通過。
為使通電時繞組電流迅速達到預設電流,串入電阻Rc;為防止關斷T時繞組電流變化率太大,而產(chǎn)生很大的反電勢將T擊穿,在繞組的兩端并聯(lián)一個二極管D和電阻Rd,為繞組電流提供一個泄放回路,也稱“續(xù)流回路”。
單電壓功率驅動電路的優(yōu)點是電路結構簡單、元件少、成本低、可靠性高。但是由于串入電阻后,功耗加大,整個功率驅動電路的效率較低,僅適合于驅動小功率步進電機。
2.1.2 高低壓驅動
為了使通電時繞組能迅速到達設定電流,關斷時繞組電流迅速衰減為零,同時又具有較高的效率,出現(xiàn)了高低壓驅動方式。
如圖3所示,Th、T1分別為高壓管和低壓管,Vh、V1分別為高低壓電源,Ih、I1分別為高低端的脈沖信號。在導通前沿用高電壓供電來提高電流的前沿上升率,而在前沿過后用低電壓來維持繞組的電流。高低壓驅動可獲得較好的高頻特性,但是由于高壓管的導通時間不變,在低頻時,繞組獲得了過多的能量,容易引起振蕩。可通過改變其高壓管導通時間來解決低頻振蕩問題,然而其控制電路較單電壓復雜,可靠性降低,一旦高壓管失控,將會因電流太大損壞電機。
2.2 恒電流斬波驅動方式:刻字機步進電機驅動器、噴繪機步進電機驅動器
2.2.1 自激式恒電流斬波驅動:線切割步進電機驅動器、寫真機步進電機驅動器
圖4為自激式恒電流斬波驅動框圖。把步進電機繞組電流值轉化為一定比例的電壓,與D/A轉換器輸出的預設值進行比較,控制功率管的開關,從而達到控制繞組相電流的目的。從理論上講,自激式恒電流斬波驅動可以將電機繞組的電流控制在某一恒定值。但由于斬波頻率是可變的,會使繞組激起很高的浪涌電壓,因而對控制電路產(chǎn)生很大的干擾,容易產(chǎn)生振蕩,可靠性大大降低。
2.2.2 它激式恒電流斬波驅動:包裝機步進電機驅動器、印刷機步進電機驅動器
為了解決自激式斬波頻率可變引起的浪涌電壓問題,可在D觸發(fā)器加一個固定頻率的時鐘。這樣基本上能解決振蕩問題,但仍然存在一些問題。比如:當比較器輸出的導tm沖剛好介于D觸發(fā)器的2個時鐘上升沿之間時,該控制信號將丟失,一般可通過加大D觸發(fā)器時鐘頻率解決。
2.3 細分驅動方式:步進電機細分、步進電機電路、步進電機控制卡、步進電機及驅動器
這是本文討論的重點,也是該系統(tǒng)采用的驅動方法。細分驅動最主要的優(yōu)點是步距角變小,分辨率提高,且提高了電機的定位精度、啟動性能和高頻輸出轉矩;其次,減弱或xc了步進電機的低頻振動,降低了步進電機在共振區(qū)工作的幾率??梢哉f細分驅動技術是步進電動機驅動與控制技術的一個飛躍。
細分驅動是指在每次脈沖切換時,不是將繞組的全部電流通入或切除,而是只改變相應繞組中電流的一部分,電動機的合成磁勢也只旋轉步距角的一部分。細分驅動時,繞組電流不是一個方波而是階梯波,額定電流是臺階式的投入或切除。比如:電流分成n個臺階,轉子則需要n次才轉過一個步距角,即n細分,如圖5所示。
一般的細分方法只改變某一相的電流,另一相電流保持不變。如圖5所示,在O°~45°,Ia保持不變,Ib由O逐級變大;在45°~90°,Ib保持不變,Ia由額定值逐級變?yōu)?/SPAN>0。該方法的優(yōu)點是控制較為簡單,在硬件上容易實現(xiàn);但由圖6所示的電流矢量合成圖可知,所合成的矢量幅值是不斷變化的,輸出力矩也跟著不斷變化,從而引起滯后角的不斷變化。當細分數(shù)很大、微步距角非常小時,滯后角變化的差值已大于所要求細分的微步距角,使得細分實際上失去了意義。
這就是目前常用的細分方法的缺陷,那么有沒有一種方法讓矢量角度變化時同時保持幅值不變呢?由上面分析可知,只改變單一相電流是不可能的,那么同時改變兩相電流呢?即Ia、Ib以某一數(shù)學關系同時變化,保證變化過程中合成矢量幅值始終不變?;诖?,本文建立一種“額定電流可調的等角度恒力矩細分”驅動方法,以xc力距不斷變化引起滯后角的問題。如圖7所示,隨著A、B兩相相電流Ia、Ib的合成矢量角度不斷變化,其幅值始終為圓的半徑。
步進電機速度 |
步進電機價格 |
步進電機扭距 |
打標機步進電機 |
步進電機生產(chǎn)廠家 |
步進電機廠 |
步進電機調速 |
pm步進電機 |
步進電機原理 |
刻字機步進電機 |
步進電機原理圖 |
步進電機報價 |
步進電機優(yōu)點 |
步進電機求購 |
步進電機型號 |
噴繪機步進電機 |
三相反應式步進電機 |
步進電機生產(chǎn) |
步進電機尺寸 |
智能步進電機 |
步進電機功率 |
線切割步進電機 |
怠速步進電機 |
步進電機供應 |
4相步進電機 |
微步進電機 |
步進電機分類 |
寫真機步進電機 |
步進電機減速器 |
購買步進電機 |
混合步進電機 |
步進電機設計 |
步進電機步距角 |
包裝機步進電機 |
4相步進電機 |
步進電機廠家 |
步進電機優(yōu)點 |
步進電機尺寸 |
步進電機速度 |
印刷機步進電機 |
三相六拍步進電機 |
步進電機公司 |
日本步進電機 |
品牌步進電機 |
大功率步進電機 |
植毛機步進電機 |
磁阻式步進電機 |
進口步進馬達 |
德國步進電機 |
防爆步進電機 |
步進電機電路圖 |
紡織機步進電機 |
步進式電機 |
步進電機廠商 |
下面介紹合成矢量幅值保持不變的數(shù)學模型:當Ia=Im·cosx,Ib=Im·sinx時(式中Im為電流額定值,Ia、Ib為實際的相電流,x由細分數(shù)決定),其合成矢量始終為圓的半徑,即恒力距。
等角度是指合成的力臂每次旋轉的角度一樣。額定電流可調是指可滿足各種系列電機的要求。例如,86系列電機的額定電流為6~8 A,而57系列電機一般不超過6 A,驅動器有各種檔位電流可供選擇。細分為對額定電流的細分。
為實現(xiàn)“額定電流可調的等角度恒力距”,理論上只要各相相電流能夠滿足以上的數(shù)學模型即可。這就要求電流控制精度非常高,不然Ia、Ib所合成的矢量角將出現(xiàn)偏差,即各步步距角不等,細分也失去了意義。下面給出了基于該驅動方法的驅動器的設計方案。
3 二相步進電機驅動器的總體設計方案
3.1 系統(tǒng)設計框圖
如圖8所示,控制板信號經(jīng)過光耦隔離與單片機中斷口相連。
單片機根據(jù)收到的脈沖信號進行脈沖信號分配,確定各相通電順序,并與CPLD里面的D觸發(fā)器相連;同時根據(jù)用戶設定的電流值和細分數(shù)通過SPI口與D/A轉換器AD5623通信,得到設定的電流值(實際上是電流對應的電壓值)。
AD5623輸出的值為期望的電流對應的電壓值,它必須與從功率模塊檢測得到的電流對應的電壓值進行比較,并把比較結果與CPLD里面的D觸發(fā)器CLR引腳相連。
CPLD與電流、細分設定的撥碼開關相連,把得到的值通過SPI口傳給單片機;以D觸發(fā)器為核心的控制邏輯,根據(jù)單片機的各相通電順序和比較器MAX907的比較結果確定各功率管的開關。
功率驅動模塊直接與電機相連,驅動電機。采用8個MOS管IRF740構成2個H橋雙極型驅動電路。IRF740{zg}可承受400 V電壓和10 A電流,開關轉換時間不會超過51 ns,管子導通電壓Vgs的取值范圍為4~20 V。
3.2 細分關鍵技術方案
“額定電流可調的等角度恒力矩細分”驅動方法的實質是恒流控制,關鍵是電流的jq控制,必須同時滿足以下各個條件:
①D/A轉換器輸出的電流值必須與期望值相當接近,而且轉換速度要快。該系統(tǒng)采用ADI公司的AD5623,12位精度,分成4 096個等級,滿足了200細分的高精度要求;2路D/A輸出滿足兩相的要求;SPI口通信,頻率高達50 MHz,建立時間快,同時單電壓供電,連接簡單。
②檢測到的電流必須能正確地反映此時的相電流。由于電機的相電流通常很大,電壓很高,檢測有一定的難度。常用的檢測方法有外接標準小電阻,電路簡單,但干擾比較大,準確性比較差;霍爾傳感器檢測準確,干擾小,連接也不復雜,所以該驅動器采用霍爾傳感器。
③比較器分辨率要高,轉換速度快。MAX907的建立時間只需12 ns,比較的電壓只要相差2 mV即可檢測出來({zd0}不超過4 mV),反應非常靈敏。
④控制功率管開關的邏輯電路要有很高的實時性,保證相電流在設定電流上下做很小的波動,以免引起浪涌,干擾控制電路。
本文采用Xilinx公司的CPLD芯片XC9572。以D觸發(fā)器為核心的控制電路全部由CPLD完成,CPLD代替了各種分立元器件,結構簡單,連接方便。圖9是控制電路的邏輯圖。
如圖9所示,當比較結果為低電平時(檢測到的電流大于設定電流),D觸發(fā)器輸出為1,或門輸出高電平,關斷管子,電流變??;當檢測到電流小于設定電流時,管子導通,從而保證相電流在設定電流上下做很小的波動。
結 語
本文建立了“額定電流可調的等角度恒力矩細分”驅動方法,并基于該方法設計實現(xiàn)了二相混合式步進電機驅動器,{zg}可達200細分,驅動電流從O.5 A/相到8 A/相可調,可驅動24系列到86系列的步進電機。實際應用證明,該方法基本上克服了傳統(tǒng)步進電機低速振動大和噪聲大的缺點,電機在較大速度范圍內轉矩保持恒定,提高了控制精度,減小了發(fā)生共振的幾率,具有很好的穩(wěn)定性、可靠性和通用性,且結構簡單。
步進電機驅動器 |
步進電機控制 |
步進電機控制 |
步進電機控制 |
機械雕刻機步進電機驅動器 |
打標機步進電機驅動器 |
步進馬達驅動器 |
步進馬達控制 |
步進馬達驅動 |
雕刻機步進電機驅動器 |
三相混合步進電機驅動器 |
刻字機步進電機驅動器 |
步進電機細分 |
步進電機芯片 |
驅動步進電機 |
兩相步進電機驅動器 |
激光雕刻機步進電機驅動器 |
噴繪機步進電機驅動器 |
步進電機電路 |
步進電機驅動電源 |
三相步進電機驅動 |
雕刻機步進電機驅動器 |
電腦繡花機步進電機驅動器 |
線切割步進電機驅動器 |
步進電機控制卡 |
步進電機和驅動器 |
步進電機驅動程序 |
反應式步進電機驅動器 |
混合式步進電機驅動器 |
寫真機步進電機驅動器 |
步進電機及驅動器 |
步進電機驅動芯片 |
兩相步進電機驅動 |
ATM機步進電機驅動器 |
醫(yī)療設備步進電機驅動器 |
包裝機步進電機驅動器 |
步進電機驅動電路 |
步進電機控制驅動 |
步進電機控制程序 |
反應式步進電機驅動器 |
兩相混合步進電機驅動器 |
印刷機步進電機驅動器 |
步進電機和驅動器 |
步進電機的驅動 |
步進電機驅動技術 |
單片機控制步進電機 |
坐標測量儀器步進電機驅動器 |
植毛機步進電機驅動器 |
電機驅動芯片 |
步進電機資料 |
步進電機控制系統(tǒng) |
步進電機驅動器公司 |
陶瓷機械步進電機驅動器 |
紡織機步進電機驅動器 |
步進電機驅動ic |
電機驅動電路 |
步進馬達控制電路 |
步進電機控制原理圖 |
噴涂設備步進電機驅動器 |
步進電機驅動器報價 |
步進系統(tǒng) |
無刷電機驅動 |
步進電機控制程序 |
步進電機驅動器電路 |
數(shù)控機床步進電機驅動器 |
低價步進電機驅動器 |
步進驅動器維修 |
可編程步進電機 |
步進電機驅動電源 |
步進電機驅動器價格 |
氣動打標機步進電機驅動器 |
便宜步進電機驅動器 |
電機驅動 |
步進電機測試系統(tǒng) |
步進電機驅動模塊 |
步進電機驅動原理圖 |
汽車儀表步進電機驅動器 |
步進電機驅動器芯片 |
024-31585354